Nitroaldol Reaction

DOI: 10.1002/ange.200705617

A Heterobimetallic Pd/La/Schiff Base Complex for anti-Selective Catalytic Asymmetric Nitroaldol Reactions and Applications to Short Syntheses of β-Adrenoceptor Agonists**

Shinya Handa, Keita Nagawa, Yoshihiro Sohtome, Shigeki Matsunaga,* and Masakatsu Shibasaki*

Chiral \beta-amino alcohols are useful building blocks found in various biologically active natural products, pharmaceuticals, chiral auxiliaries, and chiral ligands.[1] Various methods for catalytic enantioselective synthesis of β -amino alcohols have been developed over the past decade, [2] and the catalytic asymmetric nitroaldol (Henry) reaction is an efficient method for providing β-amino alcohols by reduction of the nitro moiety in nitroaldol adducts.[3] Since our first report of the catalytic asymmetric nitroaldol reaction, [4] various chiral catalysts, which are effective with nitromethane as a donor, have been developed.^[5] However, diastereo- and enantioselective nitroaldol reactions that use nitroethane and other nitroalkanes as donors are limited. To realize direct nitroaldol reactions, chiral Brønsted base catalysts could deprotonate the α proton of the nitroalkane to generate a metal nitronate, but epimerization of the products must be prevented to achieve high diastereoselectivity under kinetic control. Synselective asymmetric reactions have been established by our group and others; [6] but anti-selective asymmetric reactions required pre-activation of nitroalkanes to silylnitronates^[7] to avoid basic conditions. Therefore, a new catalyst for antiselective asymmetric nitroaldol reactions for direct use with nitroalkanes is needed in terms of atom economy.^[8] Quite recently, Ooi and co-workers^[9] reported an elegant chiral Pspiro triaminoiminophosphorane catalyst for the first direct nitroaldol reaction with excellent anti selectivity, enantioselectivity, and broad substrate generality.[10-11] Considering the importance of anti amino alcohols as precursors for various important pharmaceuticals such as β-adrenoceptor agonists, additional studies of the anti-selective reactions are desirable. Herein, we report a new heterobimetallic Pd/La/1 complex (Scheme 1) for anti-selective nitroaldol reactions, and its

1) M(OAc)₂ 2) RE(O-iPr)3 + ArOH 1-H₄ OAr M = Cu, RE = Sm: Cu/Sm/1 complexM = Pd, RE = La: Pd/La/1 complex

Scheme 1. Dinucleating (R,R)-Schiff base ligand 1-H₄ and the proposed structures of heterobimetallic Cu/Sm/(R,R)-1 and Pd/La/(R,R)-1 complexes with an ArOH additive.

application to short syntheses of β-adrenoceptor agonists 2a·HCl (ritodrine·HCl) and 2b·HCl.

2a·HCl is a selective β_2 -adrenoceptor agonist, clinically used for the prevention of pre-term birth (Scheme 2),^[12] and related compound 2b·HCl is a selective β₃-adrenoceptor

OH
$$CH_3$$
 R^1 PGO NO_2 NO_2

Scheme 2. Structures and retrosynthesis of (-)-ritodrine 2a·HCl and β_3 -adrenoceptor agonist **2b**·HCl. PG = protecting group.

[*] S. Handa, K. Nagawa, Dr. Y. Sohtome, Dr. S. Matsunaga, Prof. Dr. M. Shibasaki Graduate School of Pharmaceutical Sciences The University of Tokyo Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan) Fax: (+81) 3-5684-5206 E-mail: mshibasa@mol.f.u-tokyo.ac.jp smatsuna@mol.f.u-tokyo.ac.jp

Homepage: http://www.f.u-tokyo.ac.jp/~kanai/e_index.html [**] This work was partially supported by a Grant-in-Aid for Specially Promoted Research from MEXT, and a Grant-in-Aid for Encouragements for Young Scientists (B) (Y.S.), from JSPS, and Mitsubishi Chemical Corporation Fund (S.M.), and Toray Co Ltd.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

agonist that provides a new therapeutic for urinary dysfunction.^[13] The common chiral anti β-amino alcohol unit (4'hydroxynorephedrine) in both drugs is key for high biological activity, and we anticipated the anti-nitroaldol reaction to be one of the most straightforward methods for constructing two contiguous stereocenters in the common unit (Scheme 2). 2a and 2b could be synthesized by reduction of the nitro group of the anti-nitroaldol adduct with subsequent reductive alkylation of the amine moiety. Initially, we planned to utilize antiselective nitroaldol reactions catalyzed by a Nd/Na/chiral amide complex recently developed by our group, [11] but when used with aldehyde precursors suitable for 2a and 2b the reactions resulted in low enantioselectivities of the products.[14] Therefore, we turned our attention to developing a new catalyst suitable for β-adrenoceptor agonists syntheses.

We recently reported the utility of dinucleating Schiff base 1-H₄ (Scheme 1) in nitro-Mannich reactions of N-Boc imines (Boc = tert-butylcarboxy) with nitroethane and nitropropane. [15] Schiff base 1-H₄ selectively incorporated Cu into the inner N₂O₂ cavity and an oxophilic rare earth metal, having a large ionic radius, into the outer O₄ cavity. The cooperative functions of the two metals[16,17] in the heterobimetallic Cu/Sm/1 complex (Scheme 1; M = Cu, RE = Sm) were key to achieving high diastereo- and enantioselectivity in the nitro-Mannich reactions. An achiral 4-tert-butylphenol additive improved the enantioselectivity by performing as an achiral ligand. We hypothesized that suitable selection of a dinucleating Schiff base, a transition metal (M)/rare earth metal (RE) combination, and a phenolic additive would afford an optimal chiral environment for the anti-selective nitroaldol reaction. Thus, we initiated optimization reactions by using Schiff base 1-H₄, a phenolic additive, aldehyde 3a, and nitroethane 4a (Table 1). The Cu/Sm/1 and 4-tertbutylphenol system, which was optimal for the nitro-Mannich reactions, gave poor reactivity and selectivity (Table 1, entry 1). Screening of other rare earth metals (Table 1, entries 1-4) indicated that La(O-iPr)₃ had the best reactivity (Table 1, entry 4), and additional optimization with regard to the inner metal (Table 1, entries 4–7) revealed that the best combination was Pd(OAc)₂ and La(O-iPr)₃. These conditions gave **5 aa** in 82 % yield, anti/syn = 5.3:1, and 58 % ee (Table 1, entry 7). Other metals such as Ni(OAc)₂ and Zn(OAc)₂ gave less satisfactory results (Table 1, entries 5-6). The phenolic additive also affected both the diastereo- and enantioselectivity (Table 1, entries 7-9), and 4-bromophenol was found to be optimal (Table 1, entry 9). Finally, minor modifications of

the solvent and the reaction time gave the optimum results in THF/ xylenes, producing 5aa in 92% yield, anti/syn = 19:1, and 84% ee (Table 1, entry 10).

The substrate scope and limitations are shown in Table 2. Aromatic aldehydes with electrondonating substituents at the para-, meta-, or ortho-position gave products with high anti selectivity and good enantioselectivity (Table 2, entries 2–7). For the less reactive aldehyde 3e, the reaction at -30 °C was required for good conversion (Table 2, entry 6 versus entry 7), and aldehyde 3f having an electron-withdrawing substituent resulted in a slightly lower stereoselectivity (Table 2, entry 8). Heteroaromatic aldehyde 3g gave product 5 ga with good d.r. and ee values (Table 2, entry 9). The present system is also applicable to both α,β-unsaturated and aliphatic aldehydes, which delivered products in

Table 1: Optimization of the reaction conditions.

(R.R)-catalyst 1-H, (10 mol %) (M/RE/(R,R)-1=1:1:1)ArOH (10 mol %) solvent, -40 °C, 48 h NO₂

Entry	$M^{[a]}$	RE ^[b]	ArOH	Solvent	Yield [%]	d.r. anti/ syn ^[c]	ee [%] ^[f]
1	Cu	Sm	4-tBuC ₆ H ₄ OH	THF	33	2.3:1	1 ^[d]
2	Cu	Gd	4-tBuC ₆ H ₄ OH	THF	26	2.3:1	4 ^[d]
3	Cu	Dy	4-tBuC ₆ H ₄ OH	THF	25	2.8:1	3
4	Cu	La	4-tBuC ₆ H ₄ OH	THF	73	2:1	28
5	Ni	La	4-tBuC ₆ H ₄ OH	THF	61	2:1	12
6	Zn	La	4-tBuC ₆ H ₄ OH	THF	30	1:2	2
7	Pd	La	4-tBuC ₆ H ₄ OH	THF	82	5.3:1	58
8	Pd	La	4-MeO- C ₆ H₄OH	THF	65	3.3:1	49
9	Pd	La	4-BrC ₆ H ₄ OH	THF	77	12:1	77
10 ^[e]	Pd	La	4-BrC ₆ H ₄ OH	THF/ xylenes	92	19:1	84

[a] M(OAc)₂ was used. [b] RE(O-iPr)₃ was used. [c] Determined by ¹H NMR analysis. [d] ent-5 aa was the major product. [e] Reaction time was 69 h. [f] Values determined for the anti product.

92-77 % ee, albeit with modest anti selectivity (Table 2, entries 10–12). The reaction with nitropropane (4b) as a donor proceeded smoothly to give product **5ab** in *anti/syn* = 19:1 and 85% ee (Table 2, entry 13). By using a 5 mol% catalyst loading, good anti selectivity and enantioselectivity were maintained, but a long reaction time was required (Table 2, entry 14).

4-benzyloxybenzaldehyde 3k was selected for the synthesis of 2a and 2b. A catalytic asymmetric nitroaldol

Table 2: anti-Selective nitroaldol reactions with various aldehydes and nitroalkanes. [a]

(R,R)-catalyst (10 mol %) (Pd/La/(R.R)-1=1:1:1) 4-bromophenol (10 mol %) THF/xylenes, -40 °C

Entry	R	3	R'	4	Product	t [h]	Yield ^[b] [%]	d.r. anti/syn ^[c]	ee [%] ^[f]
1	C ₆ H ₅	3 a	CH ₃	4 a	5 aa	69	92	19:1	84
2	4-CH ₃ C ₆ H ₄	3 b	CH₃	4a	5 ba	72	80	19:1	87
3 ^[d]	4-CH ₃ C ₆ H ₄	3 b	CH ₃	4a	5 ba	72	97	15:1	83
4	3-CH ₃ C ₆ H ₄	3 c	CH ₃	4a	5 ca	72	81	13:1	83
5	2-CH ₃ C ₆ H ₄	3 d	CH₃	4a	5 da	72	83	21:1	81
6	4-CH ₃ OC ₆ H ₄	3 e	CH_3	4a	5 ea	72	47	22:1	88
7 ^[d]	4-CH ₃ OC ₆ H ₄	3 e	CH ₃	4a	5 ea	72	78	15:1	83
8	4-CIC ₆ H ₄	3 f	CH₃	4a	5 fa	72	87	8:1	72
9	2-furyl	3 g	CH ₃	4a	5 ga	72	80	12:1	80
10	E-cinnamyl	3 h	CH ₃	4a	5 ha	85	70	5:1	80
11	$Ph(CH_2)_2$	3i	CH ₃	4a	5 ia	85	75	3:1	77
12 ^[d]	Су	3 j	CH ₃	4a	5 ja	72	65	4:1	92
13	C_6H_5	3 a	CH ₃ CH ₂	4 b	5 ab	85	67	19:1	85
14 ^[e]	C_6H_5	3 a	CH ₃	4a	5 aa	120	82	16:1	85

[a] The reaction was run with 10 mol% of Pd/La/1 complex and 4-bromophenol at $-40\,^{\circ}\text{C}$ unless otherwise noted. Cy = cyclohexyl. [b] Yield of product isolated after column chromatography. [c] Determined by 1 H NMR analysis of the crude reaction mixture. [d] Reaction was run at -30 °C. [e] Reaction was performed with 5 mol% of Pd/La/1 complex and 4-bromophenol. [f] Determined for

3275

Zuschriften

reaction run with the Pd/La/(S,S)-1 complex and 4-bromophenol afforded *anti*-adduct **5ka** in 85% yield, *anti*/syn = 14:1, and 83% *ee* on a 1.0-mmol scale. Salt-free ritodrine (**2a**) was obtained in a one-flask operation from **5ka** (Scheme 3). Treatment of **5ka** in ethyl acetate with Pd/C under H₂ (1 atm) at room temperature for 12 h gave

Scheme 3. Syntheses of $β_2$ -adrenoceptor agonist (—)-ritodrine **2a**·HCl and $β_3$ -adrenoceptor agonist **2b**·HCl; Reagents and conditions: a) Pd/La/(S,S)-1 (10 mol%), 4-bromophenol (10 mol%), THF/xylenes, —30 °C, 85 h, 85 %, anti/syn=14:1, 83 % ee; b) 1. Pd/C, H₂, EtOAc, RT, 12 h; 2. **7a**, 60 °C, 24 h; then HCl in CH₃OH, 93 %; c) 1. Pd/C, H₂, EtOAc, RT, 12 h; 2. **7b**, 60 °C, 24 h; then HCl in CH₃OH, 73 %.

intermediate 6 without epimerization. Completion of the conversion of 5ka into 6 was verified by TLC analysis, and then aldehyde $7a^{[19]}$ was added to the reaction mixture. The reaction mixture was heated at 60°C under H_2 (1 atm) for 24 hours to facilitate the reductive alkylation to afford salt-free ritodrine (2a). After treating 2a with HCl in methanol 2a·HCl was obtained in 93% yield. Both the use of ethyl acetate as the solvent, instead of methanol, and the addition of aldehyde 7a after the formation of intermediate 6 were important in achieving the one-pot process to transform 5ka into 2a. Under similar conditions 2b·HCl was obtained from 5ka and aldehyde $7b^{[13c]}$ in 73% yield by the one-pot process to convert 5ka into 2b.

In summary, we developed an *anti*-selective catalytic asymmetric nitroaldol reaction utilizing a newly tuned Pd/La/1 complex with 4-bromophenol as an additive. *anti*-Nitroaldol adducts were obtained in up to 97% yield, *anti*/syn = 22:1–3:1, and 92–72% *ee.* We also demonstrated the utility of the reaction in the short syntheses of clinically important β -adrenoceptor agonists $2a\cdot HCl$ and $2b\cdot HCl$. Investigations into improving the stereoselectivity and reactivity of the

reaction, and mechanistic studies to elucidate the precise roles of the two metals^[20,21] are ongoing.

Received: December 8, 2007 Revised: February 4, 2008 Published online: March 17, 2008

Keywords: agonists · amino alcohols · asymmetric catalysis · nitroaldol reaction

- [1] a) D. J. Ager, I. Prakash, D. R. Schaad, Chem. Rev. 1996, 96, 835;
 b) Comprehensive Asymmetric Catalysis, 1st ed. (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, 1999;
 c) Catalytic Asymmetric Synthesis, 2nd ed. (Ed.: I. Ojima), Wiley-VCH, New York, 2000.
- [2] For reviews on asymmetric synthesis of vicinal amino alcohols, see: a) S. C. Bergmeier, *Tetrahedron* 2000, 56, 2561; b) M. T. Reetz, *Chem. Rev.* 1999, 99, 1121; c) H. C. Kolb, K. B. Sharpless in *Transition Metals for Organic Synthesis* (Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim, 1998, pp. 243.
- [3] For recent reviews see, a) C. Palomo, M. Oiarbide, A. Laso, Eur. J. Org. Chem. 2007, 2561; b) J. Boruwa, N. Gogoi, P. P. Saikia, N. C. Barua, Tetrahedron: Asymmetry 2006, 17, 3315, and references therein.
- [4] a) H. Sasai, T. Suzuki, S. Arai, T. Arai, M. Shibasaki, J. Am. Chem. Soc. 1992, 114, 4418; For reviews, see: b) M. Shibasaki, H. Sasai, T. Arai, Angew. Chem. 1997, 109, 1290; Angew. Chem. Int. Ed. Engl. 1997, 36, 1236; c) M. Shibasaki, N. Yoshikawa, Chem. Rev. 2002, 102, 2187; For recent related works, see: d) S.-y. Tosaki, K. Hara, V. Gnanadesikan, H. Morimoto, S. Harada, M. Sugita, N. Yamagiwa, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 11776.
- [5] For selected examples using nitromethane as a donor, see: a) C. Christensen, K. Juhl, R. G. Hazell, K. A. Jørgensen, J. Org. Chem. 2002, 67, 4875; b) B. M. Trost, V. S. C. Yeh, Angew. Chem. 2002, 114, 889; Angew. Chem. Int. Ed. 2002, 41, 861; c) D. A. Evans, D. Seidel, M. Rueping, H. W. Lam, J. T. Shaw, C. W. Dowey, J. Am. Chem. Soc. 2003, 125, 12692; d) Y. Kogami, T. Nakajima, T. Ashizawa, S. Kezuka, T. Ikeno, T. Yamada, Chem. Lett. 2004, 33, 614; e) C. Palomo, M. Oiarbide, A. Laso, Angew. Chem. 2005, 117, 3949; Angew. Chem. Int. Ed. 2005, 44, 3881; f) Y. Sohtome, Y. Hashimoto, K. Nagasawa, Adv. Synth. Catal. 2005, 347, 1643; g) D.-M. Du, S.-F. Lu, T. Fang, J. Xu, J. Org. Chem. 2005, 70, 3712; h) B. M. Choudary, K. V. S. Ranganath, U. Pal, M. L. Kantam, B. Sreedhar, J. Am. Chem. Soc. 2005, 127, 13167; i) H. Li, B. Wang, L. Deng, J. Am. Chem. Soc. 2006, 128, 732; j) T. Marcelli, R. N. S. van der Haas, J. H. van Maarseveen, H. Hiemstra, Angew. Chem. 2006, 118, 943; Angew. Chem. Int. Ed. 2006, 45, 929; k) T. Arai, M. Watanabe, A. Fujiwara, N. Yokoyama, A. Yanagisawa, Angew. Chem. 2006, 118, 6124; Angew. Chem. Int. Ed. 2006, 45, 5978; 1) Y. Xiong, F. Wanng, X. Huang, Y. Wen, X. Feng, Chem. Eur. J. 2007, 13, 829; m) M. Bandini, F. Piccinelli, S. Tommasi, A. Umani-Ronchi, C. Ventrici, Chem. Commun. 2007, 616; n) K. Ma, J. You, Chem. Eur. J. 2007, 13, 1863; o) T. Mandal, S. Samanta, C.-G. Zhao, Org. Lett. 2007, 9, 943; p) M. Bandini, M. Benaglia, R. Sinisi, S. Tommasi, A. Umani-Ronchi, Org. Lett. 2007, 9, 2151; q) F. Tur, J. M. Saá, Org. Lett. 2007, 9, 5079, and references therein. For other examples, see reviews in reference [3].
- [6] a) H. Sasai, T. Tokunaga, S. Watanabe, T. Suzuki, N. Itoh, M. Shibasaki, J. Org. Chem. 1995, 60, 7388; b) Y. Sohtome, Y. Hashimoto, K. Nagasawa, Eur. J. Org. Chem. 2006, 2894; c) Y. Sohtome, N. Takemura, K. Takada, R. Takagi, T. Iguchi, K. Nagasawa, Chem. Asian J. 2007, 2, 1150; d) T. Arai, M. Watanabe, A. Yanagisawa, Org. Lett. 2007, 9, 3595.

- [7] a) T. Ooi, K. Doda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 2054; b) T. Risgaard, K. V. Gothelf, K. A. Jørgensen, Org. Biomol. Chem. 2003, 1, 153.
- [8] B. M. Trost, Science 1991, 254, 1471.
- [9] D. Uraguchi, S. Sakaki, T. Ooi, J. Am. Chem. Soc. 2007, 129, 12392.
- [10] For an anti-selective asymmetric nitroaldol reaction of benzal-dehyde and nitroethane catalyzed by hydroxynitrile lyase, see: a) T. Purkarthofer, K. Gruber, M. Gruber-Khadjawi, K. Waich, W. Skranc, D. Mink, H. Griengl, Angew. Chem. 2006, 118, 3532; Angew. Chem. Int. Ed. 2006, 45, 3454; b) M. Gruber-Khadjawi, T. Purkarthofer, W. Skranc, H. Griengl, Adv. Synth. Catal. 2007, 349, 1445.
- [11] T. Nitabaru, N. Kumagai, M. Shibasaki, Tetrahedron Lett. 2008, 49, 272.
- [12] Ritodrine (2a) is clinically utilized as a racemate, but (-)-Ritodrine is 40 to 90-fold more active than (+)-Ritodrine in several biological assays, and is supposed to be the actual active species. See, N. Yamazaki, Y. Fukuda, Y. Shibazaki, T. Niizato, I. Kosugi, S. Yoshioka, US Patent 5,449,694, 1995, and references therein.
- [13] a) N. Tanaka, T. Tamai, H. Mukaiyama, A. Hirabayashi, H. Muranaka, M. Sato, M. Akahane, Patent WO00/02846, 1999; For related studies, see b) N. Tanaka, T. Tamai, H. Mukaiyama, A. Hirabayashi, H. Muranaka, T. Ishikawa, J. Kobayashi, S. Akahane, M. Akahane, J. Med. Chem. 2003, 46, 105; Synthesis of 2b and related compounds: c) N. Tanaka, T. Tamai, JP Patent JP2002-64840.
- [14] p-Alkoxybenzaldehydes, such as p-anisaldehyde, are much less reactive than other aldehydes in anti-selective nitroaldol reaction. p-Anisaldehyde was previously utilized by Jørgensen and co-workers, see reference [7b], resulting in less satisfactory yield and anti-selectivity than with other aldehydes.
- [15] S. Handa, V. Gnanadesikan, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2007, 129, 4900.
- [16] For reviews on bimetallic cooperative catalysis, see a) (Eds.: M. Shibasaki, Y. Yamamoto Multimetallic Catalysts in Organic Synthesis, Wiley-VCH, Weinheim, 2004; b) M. Shibasaki, S. Matsunaga, Chem. Soc. Rev. 2006, 35, 269; c) M. Shibasaki, M. Kanai, Org. Biomol. Chem. 2007, 5, 2027.

- [17] For related attempts to develop bifunctional asymmetric catalysts by using heterobimetallic Schiff base complexes, see a) V. Annamalai, E. F. DiMauro, P. J. Carroll, M. C. Kozlowski, J. Org. Chem. 2003, 68, 1973, and references therein; b) G. M. Sammis, H. Danjo, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 9928; c) W. Li, S. S. Thakur, S.-W. Chen, C.-K. Shin, R. B. Kawthekar, G.-J. Kim, Tetrahedron Lett. 2006, 47, 3453, and references therein.
- [18] On a 0.2-mmol scale, **5ka** was isolated in 78% yield, *anti/syn* = 16:1, and 85% *ee* by using 10 mol% catalyst.
- [19] Aldehyde synthesis: 7a, N. Aberle, J. Catimel, E. C. Nice, K. G. Watson, *Bioorg. Med. Chem. Lett.* 2007, 17, 3741. For aldehyde 7b, see reference [13c].
- [20] The control experiments suggested that both Pd(OAc)₂ and La(O-iPr)₃ were essential in the present reaction. We assume that cooperative functions of Pd and La metal centers are important for good anti-selectivity and enantioselectivity. For results and discussion, see the Supporting Information.
- [21] One of the possible reaction mechanisms is as follows; the La-OAr moiety could function as a Brønsted base to deprotonate α proton of the nitroalkane. The La-nitronate would then react with the aldehyde, which is coordinated to the Pd metal center, from TS-A rather than TS-B (see scheme below) to avoid steric repulsion between the R′ group and the Pd/La catalyst, preferentially giving *anti*-adducts. However, other reaction mechanisms cannot be ruled out at this stage. Detailed mechanistic studies will be reported in due course as a full article. For a recent example utilizing the Brønsted basic property of La-OAr moiety in asymmetric catalysis, see: H. Morimoto, G. Lu, N. Aoyama, S. Matsunaga, M. Shibasaki, *J. Am. Chem. Soc.* 2007, 129, 9588, and references therein.